
Compilation of Cursor Loops by Realizing Aggify “Correctly”

Construct CFG for PL/pgSQL
SQL Source => JSON => CFG
Perform Data Flow Analysis on the CFG
Liveness, Reaching Definitions, Use-Def Chain
Compile the loop body’s CFG into a Custom
Aggregate in C++ {init(), update(), finalize()}
● Compilation of Basic Blocks → goto
● Compilation of Instructions → Futamura

projection on Logical Plan
Rewrite the Cursor Loop
Original PL/pgSQL with cursor loop => An
equivalent query that invokes the custom aggregate

Haoyu Zhang, Yuchen Liu
Carnegie Mellon University, Course 15745 Project: Poster Session

NO ONE HAS IMPLEMENTED
IT CORRECTLY UNTIL US

PROPOSED METHODS/DESCRIPTION

RESULTS

Databases support User Defined Functions
Oracle, IBM DB2, PostgreSQL, and SQL Server

UDF Inlining speedups User Defined Function by
A LOT
● Froid, Apfel increase UDF performance to near

pure SQL level
● 1000x faster than before

Aggify can rewrite Cursor Loops to Custom
Aggregates
● The only case that UDF Inlining cannot handle
● Inlining works for all UDFs now

INTRODUCTION & MOTIVATION

CONCLUSIONS

val := ?
FOR fetchedcost, fetchedname IN
(
 SELECT ps_supplycost,
 s_name
 FROM partsupp,
 supplier
 WHERE ps_partkey = KEY
 AND ps_suppkey = s_suppkey)
LOOP
 IF fetchedcost < mincost THEN
 mincost := fetchedcost;

 val := fetchedname;
 END IF;
END LOOP; PL/pgSQL

if (LessThan::Operation(
CastLongtoDecimal(fetchedcost, 15, 2),
mincost)){
 mincost = fetchedcost;
 val = fetchedname;
} C++

val :=
SELECT
 CASE
 WHEN count(*) > 0

THEN custom_agg
 (fetchedcost,

fetchedname,
val)

 ELSE val
 END
FROM (...); PL/pgSQL

